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Abstract. The Transferable Belief Model is a general framework for
managing imprecise and uncertain information using belief functions. In
this framework, the discounting operation allows to combine information
provided by a source (in the form of a belief function) with metaknowl-
edge regarding the reliability of that source, to compute a “weakened”,
less informative belief function. In this article, an extension of the dis-
counting operation is proposed, allowing to make use of more detailed
information regarding the reliability of the source in different contexts,
a context being defined as a subset of the frame of discernment. Some
properties of this contextual discounting operation are studied, and its
relationship with classical discounted is explained.

1 Introduction

In the past years, the need to manipulate various forms of imperfect information
and partial knowledge has led to study new uncertainty management frame-
works. One of them, the theory of evidence [6] or theory of belief functions,
has been declined into several approaches, among which the Transferable Belief
Model (TBM) [8, 11]. This model, on which we will focus in this article, consti-
tutes a powerful and flexible framework, well suited for information fusion [2, 5,
9].

In information fusion applications, it is usually important to take into account
the reliability of the different sources in the evidence aggregation process. In the
TBM, this is achieved by the discounting operation, which transforms each belief
function provided by a source into a less informative one, based on a degree of
confidence in the reliability of the source [6, 7]. In certain applications, however,
it is possible to assess the reliability of the source in different contexts [1]. The
contextual discounting operation presented in this paper extends the classical
discounting so as to exploit such information.

This paper is organized as follows. Background material on the TBM will
first be recalled in Section 2. Contextual discounting will then be introduced in
Section 3, and an example will be analyzed in Section 4. Section 5 will conclude
the paper.
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2 The Transferable Belief Model

2.1 Basic concepts

Let x be a variable taking values in a finite set Ω = {ω1, . . . , ωK}, called the
frame of discernment (or frame). The knowledge held by a rational agent Y ,
regarding the actual value ω0 taken by x, given an evidential corpus EC, can be
quantified by basic belief assignment (bba) mΩ

Y [EC] defined as a function from
2Ω to [0, 1] m(A) verifying :

∑

A⊆Ω

mΩ
Y [EC](A) = 1

When there is now ambiguity, the full notation mΩ
Y [EC] will be simplified to mΩ

Y ,
mΩ , or even m. The vacuous bba, defined by m(Ω) = 1, represents complete
ignorance.

Two distinct pieces of evidence, quantified by bbas m1 and m2, may be
combined using the conjunctive rule of combination (CRC) or the disjunctive
rule of combination (DRC), defined, respectively, as :

m1 ∩©m2(A) =
∑

B∩C=A

m1(B)m2(C),

m1 ∪©m2(A) =
∑

B∪C=A

m1(B)m2(C), ∀A ⊆ Ω.

The CRC applies when both sources are known to be reliable, whereas the DRC
corresponds the hypothesis that at least one of the two sources is reliable [7].

2.2 Marginalization and vacuous extension

A bba defined on a product space Ω×Θ may be marginalized on Ω, by transfering
each mass mΩ×Θ(B) for B ⊆ Ω × Θ to its projection on Ω:

mΩ×Θ↓Ω(A) =
∑

{B⊆Ω×Θ | Proj(B↓Ω)=A}

mΩ×Θ(B) ,∀A ⊆ Ω (1)

where Proj(B ↓ Ω) denotes the projection of B onto Ω.
It is usually not possible to retrieve the original bba mΩ×Θ from its marginal-

ization mΩ×Θ↓Ω on Ω. However, the least commited bba [7] such that its projec-
tion on Ω is mΩ×Θ↓Ω may be computed; this vacuous extension of a bba mΩ on
the product space Ω × Θ is given by:

mΩ↑Ω×Θ(B) =

{
mΩ(A) if B = A × Θ, A ⊆ Ω

0 otherwise.
(2)

Marginalization and vacuous extension are both illustrated in Figure 1.
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Fig. 1. Marginalization (above) and vacuous extension (below) of a bba in the case of
a product space.

2.3 Conditioning and ballooning extension

Conditional beliefs represent knowledge which is valid provided that an hypothe-
sis is satisfied. Let m be a bba, B ⊆ Ω an hypothesis and mB such as mB(B) = 1;
the conditional belief function m[B] is:

m[B] = m ∩©mB . (3)

If mΩ×Θ is defined on the product space Ω × Θ, and θ0 is a subset of Θ, the
conditional bba mΩ [θ0] is defined by combining mΩ×Θ with m

Θ↑Ω×Θ
θ0

, with

mΘ
θ0

(θ0) = 1, and marginalizing the result on Ω:

mΩ [θ0] =
(

mΩ×Θ
∩©m

Θ↑Ω×Θ
θ0

)↓Ω

(4)

Assume now that mΩ[θ0] represents your beliefs on Ω conditionnally on θ0,
i.e., in a context where θ0 holds. There are usually many bbas on Ω ×Θ, whose
conditioning on θ0 yields mΩ [θ0]. Among these, the least committed one is the
balloning extension defined by:

mΩ [θ0]
⇑Ω×Θ(A × θ0 ∪ Ω × θ0) = mΩ [θ0](A), ∀A ⊆ Ω. (5)

Conditioning and ballooning extension are both presented in Figure 2.

2.4 Discounting

Let us assume that Y receives a bba mΩ
S from a source S, describing the source’s

beliefs regarding the actual value ω0. Moreover, Y has some knowledge about
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Fig. 2. Conditioning (above) and deconditioning (below) of a bba in the case of a
product space.

the reliability of S, quantified by a bba mR
Y on the space R = {R,NR}, where

R stands for “the source is reliable”, and NR for “the source is not reliable” [7].
Let us assume that mR

Y has the following form:

{
mR

Y ({R}) = 1 − α

mR
Y ({R,NR}) = α,

(6)

for some α ∈ [0, 1].
If S is reliable, the information provided by S becomes Y ’s knowledge:

mΩ
Y [{R}] = mΩ

S . (7)

If S is not reliable, the information provided by S cannot be taken into account,
and Y ’s knowledge is vacuous:

mΩ
Y [{NR}](Ω) = 1. (8)

Therefore, we have two non-vacuous pieces of evidence, mR
Y and mΩ

Y [{R}].
Assuming that they are distinct, they can be combined by vacuously extending
mR

Y to Ω×R, computing the ballooning extension of mΩ
Y [{R}] in the same space,

applying the CRC, and marginalizing the result on Ω:

mΩ
Y [mΩ

S ,mR
Y ] =

(

mΩ
Y [{R}]⇑Ω×R

∩©m
R↑Ω×R
Y

)↓Ω

. (9)

The resulting bba mΩ
Y [mΩ

S ,mR
Y ] (where the brackets [ ] indicate the evidential

corpus) only depends on mΩ
S and α. Let us denote it by αmΩ

Y . It is equal to

{
αmΩ

Y (A) = (1 − α)mΩ
S (A), ∀A ⊂ Ω,

αmΩ
Y (Ω) = (1 − α)mΩ

S (Ω) + α.
(10)
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This operation was called discounting by Shafer [6], who introduced it on
intuitive grounds. The justification presented in this section was proposed by
Smets [7].

Remark 1. If mR
Y is Bayesian:

{
mR

Y ({R}) = 1 − α,

mR
Y ({NR}) = α,

(11)

the result of the discounting is the same [7].

Remark 2. We can see αmΩ
Y as the disjunctive combination of mΩ

S with mΩ
0

defined by mΩ
0 (∅) = 1 − α and mΩ

0 (Ω) = α.

Remark 3. Alternatively, αmΩ
Y can be computed as

αmΩ
Y (A) =

∑

B⊆Ω

G(A,B)mΩ
S (B) (12)

with

G(A,B) =







1 − α if A = B 6= Ω,

α if A = Ω and B ⊂ A,

1 if A = B = Ω

0 otherwise.

(13)

G(A,B) is equal to the fraction on mΩ
S tranferred to A, for each A ⊇ B. The

whole set of such coefficients define a generalization matrix [10].

3 Contextual discounting

3.1 Basic assumptions

Let us now assume that we have evidence regarding the reliability of S, condition-
ally on each ωk ∈ Ω. We thus have K conditional bbas mR

Y [{ωk}], k = 1, . . . ,K,
instead of the single unconditional bba in (6). Assume that they are defined as

{
mR

Y [{ωk}]({R}) = βk,

mR
Y [{ωk}]({R,NR}) = αk,

(14)

with βk = 1 − αk.

Each of these bbas is conditional to a context ωk: their combination with mΩ
S

will define a contextual discounting mΩ
Y

[
mΩ

S ,mR
Y [{ω1}], . . . ,m

R
Y [{ωK}]

]
. As the

classical discounting, characterized by a scalar α, is written αm, the contextual
discounting is defined by a vector (α1, . . . , αK), and it will be written (α)mΩ

Y .
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3.2 Computation of (α)
m

Ω

Y

Ballooning extention and combination of the m
R

Y
[{ωk}] The balloning

extension of mR
Y [{ωk}] is defined as:

m
R⇑Ω×R
Y ({ωk} × {R} ∪ {ωk} ×R) = βk, (15)

m
R⇑Ω×R
Y (Ω ×R) = αk. (16)

Let mΩ×R
r be the conjunctive combination of the mR

Y [{ωk}]
⇑Ω×R. Using the

following equality, for any k 6= l:

({ωk}×{R}∪{ωk}×R)∩({ωl}×{R}∪{ωl}×R) = {ωk, ωl}×{R}∪{ωk, ωl}×R,

we easily obtain the expression of mΩ×R
r as:

mΩ×R
r (C × {R} ∪ C ×R) =







∏

ωi∈C

αi

∏

ωj∈C

βj if C 6= ∅ and C 6= Ω,

∏

ωi∈Ω

αi if C = Ω,

∏

ωj∈Ω

βj if C = ∅.

(17)

In the following, we simply note:

mΩ×R
r (C × R ∪ C ×R) =

∏

ωi∈C

αi

∏

ωj∈C

βj (18)

with the convention that a product of terms vanishes when the index set is
empty.

It can be checked that the initial conditional bbas are retrieved by condition-
ing mΩ×R

r on each ωk:

mΩ×R
r [{ωk}] = βk = mR

Y [{ωk}], k = 1, . . . ,K. (19)

Combination with m
Ω

S
The contextual discounting can be obtained from the

bbas mΩ
Y [{R}]⇑Ω×R and mΩ×R

r :

(α)mΩ
Y =

(
mΩ

Y [{R}]⇑Ω×R
∩© mΩ×R

r

)↓Ω
(20)

The bbas mΩ
Y [{R}]⇑Ω×R and mΩ×R

r have focal sets of the form B × {R} ∪Ω ×
{NR} and C × {R} ∪ C ×R, respectively, with B,C ⊆ Ω. The intersection of
two such focals sets is:

(C × {R} ∪ C ×R) ∩ (B × {R} ∪ Ω × {NR}) = B × {R} ∪ C × {NR},

and it can be obtained only for a particular choice of B and C. Then:

m
⇑Ω×R
Y

∩© mΩ×R
r (B × {R} ∪ C × {NR}) =




∏

ωi∈C

αi

∏

ωj∈C

βj



mΩ
S (B). (21)
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Marginalizing this bba on Ω gives:

(α)mΩ(A) =
∑

B∪C=A




∏

ωi∈C

αi

∏

ωj∈C

βj



mΩ
S (B), ∀A ⊆ Ω, (22)

which can also be written as:

(α)mΩ(A) =
∑

B⊆A

G(A,B)mΩ
S (B), ∀A ⊆ Ω, (23)

with:

G(A,B) =
∑

C:B∪C=A

∏

ωi∈C

αi

∏

ωj∈C

βj , ∀B ⊆ A ⊆ Ω. (24)

Coefficients G(A,B) for all A,B ⊆ Ω define a generalization matrix [10]: G(A,B)
is equal to the fraction of mΩ

S (B) transferred to (α)mΩ(A), for A ⊇ B.

Proposition 1. A simpler form of the generalization matrix in (24) is

G(A,B) =
∏

ωi∈A\B

αi

∏

ωj∈A

βj , ∀B ⊆ A ⊆ Ω, (25)

Proof: We have

B ∪ C = A ⇔ ∃D ⊆ B : C = A \ B ∪ D ⇔ ∃D ⊆ B : C = A ∪ B \ D,

and therefore:

G(A,B) =
∑

D⊆B

∏

ωi∈A\B∪D

αi

∏

ωj∈A∪B\D

βj

=
∏

ωi∈A\B

αi

∏

ωj∈A

βj

∑

D⊆B

∏

ωi∈B\D

βi

∏

ωj∈D

αj

︸ ︷︷ ︸

=1

.

Remark 4. It can be seen from Equation (22) that (α)mΩ is the disjunctive
combination of mΩ

S with a bbm mΩ
0 defined by mΩ

0 (C) =
∏

ωi∈C αi

∏

ωj∈C
βj ,

for all C ⊆ Ω.

Remark 5. Contextual discounting as defined in this section does not generalize
the classical discounting recalled in Section 2.4. In particular, the solution ob-
tained by discounting mΩ

S with rates αi = α, i = 1, . . . ,K is different, in general,
from the one obtained using the classical discounting operation with a single rate
α. Both classical and contextual discounting appear in fact to be two instances
of a more general concept, which is introduced in the next section.
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3.3 Θ-contextual discounting

Contextual discounting defined above may be generalized by assuming that the
available evidence allows to assess the reliability of S in more general contexts
θl ⊆ Ω, l = 1, . . . , L, where θ1, . . . , θL form a partition of Ω. The set Θ =
{θ1, . . . , θL} then constitutes a coarsening of Ω.

In such a case, information regarding the reliability of the source takes the
form of L conditional bbas

{
mR

Y [θl]({R}) = βl,

mR
Y [θl]({R,NR}) = αl, l = 1, . . . , L.

(26)

A similar line of reasoning as performed in Section 3.2 yields

mΩ×R
r (C × R ∪ C ×R) =

∏

θi:∪iθi=C

αi

∏

θj :∪jθj=C

βj , (27)

which is the equivalent of (18) in the previous case, but where C now ranges in
the set C of subsets of Ω which are the union of some θi’s:

C ∈ C = {A ⊆ Ω | ∃I ⊆ {1, . . . , L}, A =
⋃

i∈I

θi}.

After marginalizing on Ω, we finally obtain:

(α)mΩ(A) =
∑

B∪C=A

mΩ×R
r (C × R ∪ C ×R)mΩ

S (B), ∀A ⊆ Ω

=
∑

B∪C=A




∏

θi:∪iθi=C

αi

∏

θj :∪jθj=C

βj



mΩ
S (B), ∀A ⊆ Ω (28)

=
∑

B⊆A

G(A,B)mΩ
S (B), ∀A ⊆ Ω,

where G(A,B) denote again the coefficients of the generalization matrix associ-
ated with the contextual discounting:

G(A,B) =
∑

B∪C=A

∏

θi:∪iθi=C

αi

∏

θj :∪jθj=C

βj , ∀B ⊆ A ⊆ Ω. (29)

The operation defined by Equation (28) will be called Θ-contextual discount-
ing, with discount rates α1, . . . , αL. The contextual discounting defined in Sec-
tion 3.2 corresponds to the special case where θi = {ωi}, i = 1, . . . , L. It will be
called Ω-contextual discounting for short.

Remark 6. As before, it can be seen from (28) that (α)mΩ is the disjunctive com-
bination of mΩ

S with a bba mΩ
0 defined by mΩ

0 (C) =
∏

θi:∪iθi=C αi

∏

θj :∪jθj=C
βj

if C ∈ C, and mΩ
0 (C) = 0 otherwise.
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Remark 7. Assume that Θ is composed of a single element θ = Ω. Then, from
Remark 6, (α)mΩ is the disjunctive combination of mΩ

S with a bba mΩ
0 defined

by mΩ
0 (∅) = 1 − α and mΩ

0 (Ω) = α. Hence, from Remark 2, (α)mΩ is equal
to the classical discounting of mΩ

S : classical discounting is thus Θ-contextual
discounting with Θ = {Ω}.

Remark 8. It can be shown that the same results are obtained if knowledge
about the reliability of S is expressed as

{
mR

Y [θk]({R}) = βk,

mR
Y [θk]({NR}) = αk.

(30)

4 Examples

Example 1. Let Ω = {ω1, ω2, ω3}, un m a bba on Ω. The Ω-contextual discount-
ing of m with rates (α) = (α1, α2, α3) yields

(α)m(∅) = β1β2β3)m(∅)
(α)m({ω1}) = β2β3[m(ω1) + α1m(∅)]
(α)m({ω2}) = β1β3[m(ω2) + α2m(∅)]
(α)m({ω3}) = β1β2[m(ω3) + α3m(∅)]

(α)m({ω1, ω2}) = β3[m({ω1, ω2}) + α1m({ω2}) + α2m({ω1}) + α1α2m(∅)]
(α)m({ω1, ω3}) = β2[m({ω1, ω3}) + α1m({ω3}) + α3m({ω1}) + α1α3m(∅)]
(α)m({ω2, ω3}) = β1[m({ω2, ω3}) + α2m({ω3}) + α3m({ω2}) + α2α3m(∅)]

(α)m(Ω) = m(Ω) + α1m({ω2, ω3}) + α2m({ω1, ω3}) + α3m({ω1, ω2})
+α1α2m({ω3}) + α2α3m({ω1}) + α1α3m({ω2})+
α1α2α3m(∅).

The corresponding generalization matrix is show in Table 1.

Table 1. Generalization matrix associated to the Ω-contextual discounting of m.

∅ {ω1} {ω2} {ω1, ω2} {ω3} {ω1, ω3} {ω2, ω3} {ω1, ω2, ω3}

∅ β1β2β3

{ω1} α1β2β3 β2β3

{ω2} β1α2β3 β1β3

{ω1, ω2} α1α2β3 α2β3 α1β3 β3

{ω3} β1β2α3 β1β2

{ω1, ω3} α1β2α3 β2α3 α1β2 β2

{ω2, ω3} β1α2α3 β1α3 β1α2 β1

{ω1, ω2, ω3} α1α2α3 α2α3 α1α3 α3 α1α2 α2 α1 1
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With α1 = 1, α2 = α3 = 0, we obtain:

(α)m(∅) = (α)m({ω2}) = (α)m({ω3}) = (α)m({ω2, ω3}) = 0
(α)m({ω1}) = m(ω1) + m(∅)

(α)m({ω1, ω2}) = m({ω1, ω2}) + m({ω2})
(α)m({ω1, ω3}) = m({ω1, ω3}) + m({ω3})

(α)m({ω1, ω2, ω3}) = m({ω1, ω2, ω3}) + m({ω2, ω3}).

The belief given to {ω1} is unchanges (the others elements are perfectly
recognized). The source being reliable when identifying {ω2} and {ω3}, the belief
given to each element A containing those latter is transferred on A ∪ {ω1}: the
ability of the source to recognize this element is indeed unknown.

Example 2. Consider now the Θ-contextual discounting of m from the previous
example, for Θ = {θ1, θ2} with θ1 = {ω1}, θ2 = {ω2, ω3}, associated with α1 and
α2 respectively. The generalization matrix is shown in Table 2.

Table 2. Generalization matrix associated to the Θ-contextual discounting of m, with
Θ = {{ω1}, {ω2, ω3}}.

∅ {ω1} {ω2} {ω1, ω2} {ω3} {ω1, ω3} {ω2, ω3} {ω1, ω2, ω3}

∅ β1β2

{ω1} α1β2 β2

{ω2} β1β2

{ω1, ω2} α1β2 β2

{ω3} β1β2

{ω1, ω3} α1β2 β2

{ω2, ω3} β1α2 β1α2 β1α2 β1

{ω1, ω2, ω3} α1α2 α2 α1α2 α2 α1α2 α2 α1 1

Remark that, with α1 = 1, α2 = 0, the result is the same as the one obtained
previously, which is not true in the general case.

5 Conclusion

We defined in this article a contextual discounting. This concept allows to model
accurately the reliability of a source; it is shown to generalize the classical dis-
counting introduced by Shafer [6]. It seems to provide an adequate tool to tackle,
e.g., sensor fusion applications, in which the reliability of sensors depends on the
context.

It seems interesting to learn the reliability of the source from a training set,
instead of having it assessed by an expert. In the case of classical discounting, an
approach has already been proposed in [4], where the discounting coefficients α
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for each source are computed such that they minimize a measure of discrepency
between observations and sensor outputs. In the case of the contextual discount-
ing, both the partition Θ of Ω and the set of coefficients have to be determined.
This is left for future research.
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